Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D Numerical Analysis Investigating Distribution of Contact Pressures for a Number of Cylindrical Bearing Axial Profiles When Placed Under Radial Load Conditions

2009-04-20
2009-01-1193
Increased torque values passing from engine to transmission have, increasingly become a problem regarding shaft misalignment. Engineers are restricted with regard to applying ISO standards when investigating bearing life cycles as they tend only to cover normal [radial thrust] load conditions. Depending on the application, the need has arisen for numerical models to determine reduction in normal life cycles due to abnormal running conditions. The Simulia Finite Element package Abaqus v6.7 provides trends in the deformations, contact pressures and their respective distribution. It was found the most efficient profile, with regards to a uniform contact pressure, under both radial and misaligned conditions is the toroidal profile.
Technical Paper

3-D PIV Analysis of Structural Behavior of D.I. Gasoline Spray

2001-09-24
2001-01-3669
Three-dimensional behaviors of direct injection (D.I.) gasoline sprays were investigated using 2-D and 3-D particle image velocimetry (PIV) techniques. The fuel was injected with a swirl type injector for D.I. gasoline engines into a constant volume chamber in which ambient pressure was varied from 0.1 to 0.4 MPa at room temperature. The spray was illuminated by a laser light sheet generated by a double-pulsed Nd:YAG laser (wave length: 532 nm) and the succeeding two tomograms of the spray were taken by a high-resolution CCD camera. The 2-D and 3-D velocity distributions of the droplet cloud in the spray were calculated from these tomograms by using the PIV technique. The effects of the swirl groove flows in the injector and the ambient pressure on the structural behavior of the droplet cloud in the spray were also examined.
Technical Paper

3-Dimensional Modeling of the Regeneration in SiC Particulate Filters

2005-04-11
2005-01-0953
In order to use modeling as a predictive tool for real-world particulate filter designs (segmented filters, non-axisymmetric designs), it is necessary to develop reliable 3-dimensional models. This paper presents a 3 d modeling approach, which is validated against engine-bench measurements with both FBC and CDPF systems. Special emphasis is given to the prediction of the transient inlet flow distribution, which is realized without resorting to external CFD software. The experimental and modeling results illustrate the 3-d nature of the problem, induced by the heat capacity and conductivity effects of the cement layers. It is possible to predict the localization of regeneration in certain areas of the filter (partial regeneration), as a result of poor heat transfer to thermally isolated regions in the filter. The accuracy of the model was validated by extensive comparisons with temperature measurements in 30 positions inside the filters and at various operating conditions.
Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Technical Paper

3D CFD Model of DI Diesel Low Pressure Fuel Pump System

2017-10-08
2017-01-2304
This paper discusses the holistic approach of simulating a low pressure pump (LPP) including test stand flow dynamics. The simulation includes all lines and valves of the test stand representing realistic test operating conditions in the simulation. The capability to capture all line dynamics enables a robust design against resonances and delivers high-quality performance data. Comparison with actual test data agrees very well giving us confidence in the prediction capability of proposed method and CFD package used in the study. Despite the large spatial extent of the simulation domain, Simerics-MP+ (aka PumpLinx) is able to generate a feasible mesh, together with fast running speed, resulting in acceptable turn-around times. The ability to still model small gaps and clearance of the LPP very efficiently enables inclusion of realistic tolerances as experienced on hardware.
Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

3D Image Metrology for Lean Manufacturing

1999-06-05
1999-01-2290
The need to improve quality while reducing cost in aerospace manufacturing is requiring new manufacturing methods and processes. Advanced technologies, such as 3D Image Metrology, offer great potential to lean manufacturing, if properly integrated into the production process. Over the last years 3D Image Metrology has developed a level of performance, which make it ideally suited for this purpose. These capabilities include the automatic in-process inspection of tools and parts before machining, machine control for highly accurate positioning during the machining operation, and in-process inspection during machining. This offers jig-less assembly, lower inventory, faster part throughput, and many more advantages.
Technical Paper

3D Inside Vehicle Acoustical Holography

2002-07-09
2002-01-2228
A continuously growing demand comes from the automotive industry in order to get an experimental tool allowing for the optimization of materials and sound insulating products implementation inside the car, so as to propose the best acoustic performance at reduced costs. The acoustical imaging system LORHA provides part of the solution and its demonstrated capability of measuring the acoustic field inside a vehicle makes it an advanced tool for performing extensive studies of the acoustic transparency of car openings. This paper focuses on the methodology and recent operational results obtained within the tight collaboration established between METRAVIB RDS, its partner HUTCHINSON and well known car manufacturers.
Technical Paper

3D Modelling of Combustion and Pollutants in a 4-Valve SI Engine; Effect of Fuel and Residuals Distribution and Spark Location

1996-10-01
961964
The SI engine combustion model LI-CFM introduced by Boudier et, al. (1992) [8] is extended to deal with actual engines. New models are proposed to simulate ignition with convection at the spark and flame-wall interaction. The scalar properties of the unburnt gases within the combustion zone are computed. This allows for the computation of flame propagation in temperature, fuel and residual gas stratified charges. A model for NO and CO formation is introduced. It is based on a conditional burnt/unburnt averaging of the reaction rates. Pollutants are created at the flamelet level and evolve in the burnt, gases using a mixed equilibrium/kinetic scheme. All these physical models are implemented in a multi-block version of the Kiva 2 code, KMB. This code is used to simulate a 4-valve engine including intake ports. Initial and boundary conditions are obtained from a ID acoustic code.
Technical Paper

3D analysis of vapor and liquid phase of GDI injectors using laser induced exciplex fluorescence tomography in a high pressure/high temperature spray chamber

2007-07-23
2007-01-1827
The quality of mixture formation in gasoline direct injection (GDI) engines has a significant influence on combustion, emissions and mileage. A new measurement technique was set up at an optically accessible high pressure / high temperature spray chamber to investigate the spatial mass distribution of vapor and liquid phase in order to optimize the stratified engine operation mode. Therefore a laser light sheet is traversed through the spray, the exciplex fluorescence is detected and the tomography results are quantified by the global information of the injected mass, which allows detailed spray investigations with λ-charts. For spray homogeneity analysis a new method based on histogram calculation is presented allowing grid independent comparison of different injector types.
Technical Paper

3D-CFD Flow Structures in Journal Bearings

2009-11-02
2009-01-2688
Hydrodynamic radial journal bearings under unsteady load, which are common for automotive applications, are exposed to cavitation, e.g. flow, suction, shock and exit cavitation. The fluid mechanic description of the flow in journal bearings takes advantage of the small bearing clearance, which allows the reduction of the Navier-Stokes equations and leads to the Reynolds equation. The Reynolds equation is two-dimensional, the radial pressure gradient and the radial velocity component are neglected. However, the equation includes the surface velocities, oil density and viscosity and describes the relation between hydrodynamic pressure and local clearance. With the introduction of a cavitation index or a mass flow coefficient a powerful method to carry out numerical studies can be created, which allows the calculation of flow properties and the prediction of regions where the lubrication film disintegrates.
Technical Paper

3D-CFD Methodologies for a Fast and Reliable Design of Ultra-Lean SI Engines

2022-06-14
2022-37-0006
The continuous pursuit of higher combustion efficiencies, as well as the possible usage of synthetic fuels with different properties than fossil-ones, require reliable and low-cost numerical approaches to support and speed-up engines industrial design. In this context, SI engines operated with homogeneous ultra-lean mixtures both characterized by a classical ignition configuration or equipped with an active prechamber represent the most promising solutions. In this work, for the classical ignition arrangement, a 3DCFD strategy to model the impact of the ignition system type on the CCV is developed using the RANS approach for turbulence modelling. The spark-discharge is modelled through a set of Lagrangian particles, whose velocity is modified with a zero-divergence perturbation at each discharge event, then evolved according to the Simplified Langevin Model (SLM) to simulate stochastic interactions with the surrounding gas flow.
Standard

3GCN - SEAT DISTRIBUTION SYSTEM

2014-08-15
CURRENT
ARINC809-3
This specification defines general architectural philosophy and specific design guidance for the proper installation and interface of various cabin equipment within the seats. Consistency with this specification allows each component installed on the seat to operate in concert when integrated with other relevant cabin type equipment. Standard electrical and mechanical interfaces of the In- Flight Entertainment System (IFES) equipment for the 3rd Generation Cabin Network (3GCN) associated with the seat are defined. This equipment consists of the headphone jacks (HPJ), passenger control unit (PCU)/multi function handset (including the cord), seat video display (SVD), remote data outlet (RDO), integrated seat box (ISB) which includes the seat power box (SPB)/seat data box (SDB), remote power outlet (RPO), and in-seat cables. Appropriate definitions are also provided for other electrical devices associated with the seat control/position mechanism.
Book

3rd AVL International Commercial Powertrain Conference Proceedings (2005)

2005-01-01
The AVL International Commercial Powertrain Conference is the premier forum for truck, agricultural and construction equipment manufacturers to discuss powertrain technology challenges and solutions across their industries. The topics of the conference, which happens every two years, cover all five elements of a modern powertrain: engine, transmission, electric motor, battery and the electronic control which are used basically the same way in the quest for optimal efficiency and environmental compatibility. This event offers a unique opportunity for highly regarded professionals to address the synergy effects and distinctive characteristics of commercial vehicles, agricultural tractors and non-road vehicles, and industrial machinery.
Technical Paper

4-Sensor 2-Channel Anti-Lock System for FWD Cars

1986-02-01
860511
The possibility of 2 Channel anti-lock system, which controls each of two independent hydraulic circuits of diagonal split braking system of FWD car seperately, were studied. Theoretical investigation suggested two out of four possible control logics to be promising and they were proved to be practically satisfactory through vehicle test. This system is almost as effective as expensive 3-channel or 4-channel system, when the braking force distribution between front and rear axles is correct as required by EEC Braking regulation. Under extreme condition that rear wheels lock earlier than fronts, the compromise between stopping distance and stability is necessary.
Standard

400 Hz CONNECTION AIRCRAFT ELECTRICAL MAINTENANCE PROCEDURES

1994-12-01
HISTORICAL
AIR4365
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Standard

400 Hz Connection Aircraft Electrical Maintenance Procedures

2008-03-28
HISTORICAL
AIR4365A
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Standard

400-CYCLE GROUND POWER UNIT PROVISIONS FOR AIRCRAFT ELECTRICAL SYSTEM PROTECTION

2002-12-16
CURRENT
ARP760
This SAE Recommended Practice which defines the terms and tabulates the limits of the characteristics for various protective devices used in conjunction with 400-cycle ground power for civil aircraft is intended to assist the airlines in standardizing on 400-cycle protective systems. The limits found to be acceptable in the civil aircraft industry are presented.
Technical Paper

4000 F Oxidation Resistant Thermal Protection Materials

1966-02-01
660659
Coated refractory metals, coated and alloyed graphites, hafnium-tantalum alloys, refractory borides, and stabilized zirconias are considered for the 3600–4000 F high-velocity air environment. Only refractory borides and stabilized zirconias are indicated as offering long duration and reuse capabilities for such high-temperature utilization. Iridium, as coatings on substrates of either graphites or refractory metals, appears attractive for shorter times (less than 1 hr). Environmental evaluation and the need for a theoretical framework to enable the prediction of performance data for such materials are indicated to be major problems facing users and suppliers.
Journal Article

400Hz High Speed Static Transfer Switch

2008-11-11
2008-01-2877
The objective of this project was to replace electromechanical power line contactors with a Static Transfer Switch (STS) to improve the transfer of electrical power between aircraft generators and decrease required maintenance. The switch requirements include high reliability, lightweight, and high speed (less than 15mS) power transfer. An STS can shorten the bus transfer time to less than the “ride-through” of aircraft electronic loads and therefore have the ability to control and transfer electrical power while maintaining critical mission requirements. The content of this paper and presentation will discuss the initial problem, the research and development approach, design, and initial testing of the STS.
X